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HIDE AND SEEK FROM A FIXED BASE 

by 

Alan R. Washburn 
Naval Postgraduate School 

Monterey, CA 9 3940 

Background 

Suppose that a force of "hiders" has an area  A avail- 

able within which to hide from a force of "seekers."  Each side 

can distribute its forces arbitrarily within A.  If the density 

of seeker effort at the location of any given hider is s, then 

the hider is assumed to escape with probability  f(s), where 

f(s)  is some decreasing, convex function of s.  The hiders 

want to maximize the probability of escape, and the seekers 

want to minimize it.  If no further constraints are imposed, it 

is not difficult to show that each side should allocate its 

forces uniformly throughout the region, and that the escape 

probability as the value of a two-person zero sum game is 

f(S/A), where  S  is the total amount of seeker effort.  Our 

object in this report is to investigate the impact of constraints 

on the motion of the hiders.  Specifically, we want to investi- 

gate what happens if the hiders are required to visit a 

particular point (a port, typically) on the boundary of  A 

every  t, while never travelling at a speed exceeding  v. 



We can anticipate that the escape probability will be  f(S/A) 

when the product vt is "large," and 0 when vt is "small." 

In order to simplify the analysis, the following assump- 

tions are made: 

a) the region is a circular sector (wedge) 

b) the revisit point is at the apex of the wedge 

c) f(s) = 1/(1 + s). 

In Figure 1, the heaviness of the shading indicates the density 

of seeker effort for a typical seeker strategy.  Note that the 

effort is dense in the vicinity of the apex, since the hiders 

must all transit through that area in order to visit the apex. 

A typical hider "tour" is shown.  The hider basically picks 

a direction at random and a range from a distribution introduced 

in the next section, goes to the point and stays in the vicinity 

of that point until it is time to return to the apex.  Each 

hider picks an independent tour after each visit to the apex. 

Results 

Let 

0  =  angle of  the  circular  sector 

r =  radius  of  the  circular  sector sec 
2 

A = 9r  /2 = area of sector sec' 

v = hider speed 

t = revisit time 

r   = vt/2 = maximum range of the hiders max    ' 3 



S = total amount of seeker effort 

Y = s/(e rL» 
U = r  /r sec' max 

The value of the game (escape probability) depends on the 

two dimensionless quantities Y  (a normalized amount of seeker 

effort) and U  (a normalized sector size); call it P(U,Y). 

Figure 2 shows  P(U,Y)  as a function of  Y  for several values 

of  U.  Since  U = 1  corresponds to the case where the maximum 

range of the hiders is equal to the sector radius, all values 

of  U > 1  follow the same curve as for  U = 1.  The curves 

in Figure 2 are equivalent to: 

(1)     Let  V = 1 - \/l- U2 

Case 1:   for  Y <_ V2/6, P(U,Y) = 1 - /2Y/3 

(2) 
Case 2:   for Y > V /6, P(U,Y) = V/(Y + U /2) 

Standard limiting operations show that 

(3) 

lim   P(U,Y) = 0 
r   •*• 0 max 

lim  P(U,Y) = 1/(1 + S/A) , 

max 

as anticipated, 



FIGURE 1 

ILLUSTRATING A HIDER PATH AND A SHADED SEEKER DENSITY 
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For example, suppose 

r   = 5000 mi max 

r   = 1000 mi sec 
5 

S = (25 hr holding time)(10  sq mi/hr search rate) 

= 25 x 10  sq mi 

0=1 radian 

Then Y = .1, U = .2, and V = .0 2.  This is Case 2, 

and P(U,Y) = .164.  If  r    were "very large," we would have 
IT13.X 

P(U,Y) = 1/6. 

The optimal strategy for the hiders is to pick an angle 

at random and a range from the distribution F(ur ), where 3 max 

(4) P(u)   = 

0 for     0   <_ u  <_ V 

(U"V)2 for     V   <   u   <   U   , I   2V(l-u) 

and where     V     is  as  earlier  defined.     Qualitatively,   the hiders 

have  a  tendency to pick  large  ranges,   with    Vr being 

the smallest  range  picked. 

Let    y(u)     be   the  density of  seeker effort at range 

ur        ,   let     T  =   v^Y,   and  let     K  =   (Y  +  U2/2)/[V(l   -  V/3)]. 
IUGLJC 

Then the optimal density  y(u)  is 



(5)  Case 1 y(u) = 

/T/u - 1    for  u < T 

for u > T 

(6)  Case 2 y(u) = • 

K /v7u - 1 for u < V 

K - 1 for u > V 

Qualitatively, the searchers have a tendency to cluster near 
2 

the apex, particularly in Case 1, (Y £ V /6).  The density 

is actually unbounded near the apex; that is, lim  ~ y(u) = °°, 

The proof that the functions given above represent 

the value of the game and the optimal strategies for the two 

sides is the subject of the next section. 

Exact Statement of the Problem 

Let  u be range from the apex measured in units of 

r   , so that the hiders must pick a range  u  for each tour max' r        ^ 

in the interval [0,U]. Let F(v) be the C.D.F. used by the 

hiders. Then the hiders spend G(u) of their time within u 

of the apex, where 

(7) G(u) = F(u) + u(l - F(u) ) . 



Formula (7) is true because a hider will be within u of 

the apex throughout its patrol period if it picks a range 

smaller than or equal to  u, and will spend a fraction  u of 

its patrol time within u of the apex even if it picks a 

range greater than u.  F(u)  can be any C.D.F. defined on 

[0,U], but G(u)  cannot, which is what makes the problem non- 

trivial. 

Since  y(u)  is the density of seeker effort at range u, 

the escape probability for a hider averaged over time is 

u -1 
(8) A(F,y) = /  (1 + y(u)) X dG(u) , 

0 
where 

U 
(9) /  y(u) u du = Y  and  y(u) >_ 0 

0 

Equations   (7),    (8),   and   (9)   define   a   two-person   zero   sum  game 

where   the  hiders   select a  C.D.F.     F(u)     on      [0,U]     and  the 

seekers  select    y(u)     according to   (9).     We  next  show  that 

the  results  quoted earlier constitute  a  saddle  point of  this 

game. 

Proof of  Results 

The  results   shown below were  discovered by  using  the 

theory of optimal  control,   but we will  prove   that  the   game 

has  been solved by  showing  that  the  solution offered  is  a 

saddle  point.     While  this   is  analytically  simpler,   it will 

not motivate  the  results. 

8 



We must show that 

max A(F,y*) = P(U,Y) = min A(F*,y) , 
F y 

where  F*  and y*  are the functions given earlier. 

Proof that P(U,Y) = min A(F*,y) 
y 

Let  G*(u) = F*(u) + u(l - F*(u)).  Using (1) and (4), 

F*(U) = 1, so also  G*(U) = 1.  After substitution and simplifi- 

cation, 

G*(u) = < 

u 

2    2 u  + VZ 

2V 

for  u < V 

for  V < u < U 

Let  g(u) = (d/du)G (u) .  Then we have 

U 
A(F*,y) = /  g(u)/(l + y(u)) du , 

0 

where 

g(u) = - 

1   for u < V 

u/V  for V < u < U 

Consider the Lagrangian 



My) = / 
0 

u 

rfw+ ^ y^ du , 

which is to be minimized subject to y(u) >_ 0.  We minimize 

for each u separately by differentiation, obtaining the 

minimizing function y: 

y(u) = Xu - 1 

where     +     indicates   that     y(u)      is   to be  0   rather  than negative 

If     XV  <   1,   y(u)   >  0     for all     u,   and 

(10) A(F*,y)   =   /     /Xug(u)   du 
0 

= /X 
r v u -| 
/    /u du +  /     u//V du 

L0 V J 

= /X/V     |~! V2   +   (U2   -  V2)/2l 

= /"vv    [v /6 + tr/2] 

If    y     is   to be   feasible,   we must also  have 

(11) 
U    ^ V     U 0 

Y  =  /     uy(u)du =  /    /u7X du +  /  —=— du  -  U /2 
0 0 V / XV 

=  ——   [V2/6   +  U2/2]   -   U2/2 
/Tv 

10 



Since     U2  + V2 =   2V,   V2/6  +  U2/2  = V(l   - V/3).     Solving 

(11) for    /T    and  then substituting    /T    in   (10),   we  obtain 

A(F*,y)   =  P(U,Y),   and also     XV  <   1     if  and only  if     Y   >  V2/6. 

If     XV _>  1,   y(u)   =  0     for     u  >_ 1/X.     Let    T =  1/X.     Then 

T 
(12) A(F*,y)   =   /    /Tu  du+l-T  =   l-  T/3   , 

0 

and if y  is to be feasible we must have 

T 
(13) Y = /  u(/l/Xu - l)du = 2T2/3 - T2/2 = T2/6 

0 

Solving   (13)   for     T     and  substituting  in   (12),   we  obtain 

A(F*,y)   =  P(U,Y),   and also     XV  >  1     if and only  if    Y £ V2/6. 

According  to  Everett's   theorem   [1]   on  Lagrange  multipliers, 

A(F*,y)   >_ A(F*,y) ,   so we  have   shown   that     P(U,Y)   = min    A(F*,y). 

We   also  note   that     y  =  y*. 

Proof   that     P(U,Y)   =  max A(F,y*) 
F 

Since  y*(u)  is differentiable, we can integrate 

A(F,y*)  by parts to obtain 

A(F'Y*} = 1 +(y*(u) " /  G(U) B(^du » 

where 

B(u) = - (^ y*(u))/(l + y*(u ))2 

11 



In both Cases I and II, B(u) > 0  for u <_ V, and B(u) =0 

for  u > V  (note  T <_ V  in (5) ) .  Since G(u) = u + F(u) (1-u) > u, 

U 
A(F'Y*) i 1 + y*(0) " /  uB(u)du . 

But it is also true that G*(U) 
= u for u <_ V, so 

A(F,y*) <_ A(F*,y*)  for any  F.  But we already know 

A(F*,y*) = P(U,Y), so the proof is complete. 
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